Q)

Find the general solution of $(x + 2y^3) \frac{dy}{dx} = y$.

Soln:

Given that, $(x + 2y^3) \frac{dy}{dx} = y$ $y \cdot \frac{dx}{dy} = x + 2y^3$ $\Rightarrow \frac{dx}{dy} = \frac{x}{y} + 2y^2$ $\Rightarrow \frac{dx}{dy} - \frac{x}{y} = 2y^2$

which is a linear differential equation.

On comparing it with $\frac{dx}{dy} + Px = Q$, we get

$$P = -\frac{1}{y}, Q = 2y^{2}$$

$$IF = e^{\int -\frac{1}{y} dy} = e^{-\int \frac{1}{y} dy}$$

$$= e^{-\log y} = \frac{1}{y}$$

$$x \cdot \frac{1}{y} = \int 2y^{2} \cdot \frac{1}{y} dy + C$$

$$\Rightarrow \frac{x}{y} = \frac{2y^{2}}{2} + C$$

$$\Rightarrow \frac{x}{y} = y^{2} + C$$

$$\Rightarrow x = y^{3} + Cy$$